9 research outputs found

    Stochastic Claims Reserve in the Healthcare System: A Methodology Applied to Italian Data

    Get PDF
    One of the challenges in the healthcare sector is making accurate forecasts across insurance years for claims reserve. Healthcare claims present huge variability and heterogeneity influenced by random decisions of the courts and intrinsic characteristics of the damaged parties, which makes traditional methods for estimating reserves inadequate. We propose a new methodology to estimate claim reserves in the healthcare insurance system based on generalized linear models using the Overdispersed Poisson distribution function. In this context, we developed a method to estimate the parameters of the quasi-likelihood function using a Gauss–Newton algorithm optimized through a genetic algorithm. The genetic algorithm plays a crucial role in glimpsing the position of the global minimum to ensure a correct convergence of the Gauss–Newton method, where the choice of the initial guess is fundamental. This methodology is applied as a case study to the healthcare system of the Tuscany region. The results were validated by comparing them with state-of-the-art measurement of the confidence intervals of the Overdispersed Poisson distribution parameters with better outcomes. Hence, local healthcare authorities could use the proposed and improved methodology to allocate resources dedicated to healthcare and global management

    Effect of Domain Size, Boundary, and Loading Conditions on Mechanical Properties of Amorphous Silica: A Reactive Molecular Dynamics Study

    No full text
    Mechanical properties are very important when choosing a material for a specific application. They help to determine the range of usefulness of a material, establish the service life, and classify and identify materials. The size effect on mechanical properties has been well established numerically and experimentally. However, the role of the size effect combined with boundary and loading conditions on mechanical properties remains unknown. In this paper, by using molecular dynamics (MD) simulations with the state-of-the-art ReaxFF force field, we study mechanical properties of amorphous silica (e.g., Young’s modulus, Poisson’s ratio) as a function of domain size, full-/semi-periodic boundary condition, and tensile/compressive loading. We found that the domain-size effect on Young’s modulus and Poisson’s ratio is much more significant in semi-periodic domains compared to full-periodic domains. The results, for the first time, revealed the bimodular and anisotropic nature of amorphous silica at the atomic level. We also defined a “safe zone” regarding the domain size, where the bulk properties of amorphous silica can be reproducible, while the computational cost and accuracy are in balance

    Molecular scale insight of pore morphology relation with mechanical properties of amorphous silica using ReaxFF

    No full text
    Porous materials are typically heterogeneous and they contain large variations of micro-/nano-pore structures, causing complicated behaviors. In continuum models, most mechanical properties of porous materials are estimated based on porosity, while the variations of micro/nano structures are ignored. That could be problematic as the microscopic heterogeneity may affect the mechanical response of porous materials. Thus, understanding micro/nano heterogeneity impact has been the focus in many scientific and engineering subjects. In the present study, we investigated the effect of nanopore structure (including pore shape and orientation) as well as porosity on mechanical properties of amorphous silica (a-SiO2). The pore sizes in our simulations are comparable to the corresponding ones observed in a-SiO2 based materials. We found that the existing of nanopores strongly influences Young’s modulus (E) and critical energy release rate (GIC). These properties decrease with increasing porosity. Importantly, the impact of nanopores was characterized by structural parameters of porous materials. In addition to dependency on porosity, Young’s modulus also was found to vary as a function of potential energy per atom, which highly depends on nanopore shape. Furthermore, critical energy release rate was found to increase with increasing ligament length (also known as pore wall thickness). The results highlighted the importance of nanopore structures, which must be taken into account when studying fracture mechanisms in porous materials. Based on our findings, it was proposed that mechanical properties of porous materials can be controlled by nano-engineering pore structures

    Decision-Making Algorithm and Predictive Model to Assess the Impact of Infectious Disease Epidemics on the Healthcare System: The COVID-19 Case Study in Italy

    No full text
    To improve decision-making strategies and prediction based on epidemiological data, so far biased by highly-variable criteria, algorithms using unbiased morbidity parameters, i.e. Intensive Care Units (ICU) and Ordinary Hospitalizations (OH), are proposed. ICU/OH acceleration and velocities are mathematically modeled using available and official data to derive two thresholds, alerting on 30 % ICU and 40 % OH of COVID-19 daily occupancy settled by the Italian Minister of Health, as a case of study. A predictive model is also proposed to estimate the daily occupancy of ICU and OH in hospitals for each region, using a Susceptible-Infected-Recovered-Death (SIRD) epidemic model to further extend occupancy prediction in each regional district. Computed data validated the proposed models in Italy after almost two years of pandemic, obtaining agreements with the Italian Presidential Decree regardless of the different regional trends of epidemic waves. Therefore, the decision-making algorithm and prediction model resulted valuable tools, retrospectively, to be tested prospectively in sustainable strategies to curb the impact of COVID-19, or of any other pandemic threats with any aggregate of data, on local healthcare systems

    Small bowel to closest human body surface distance calculation through a custom-made software using CT-based datasets

    No full text
    Screening of the gastrointestinal tract is imperative for the detection and treatment of physiological and pathological disorders in humans. Ingestible devices (e.g., magnetic capsule endoscopes) represent an alternative to conventional flexible endoscopy for reducing the invasiveness of the procedure and the related patient's discomforts. However, to properly design localization and navigation strategies for capsule endoscopes, the knowledge of anatomical features is paramount. Therefore, authors developed a semi-automatic software for measuring the distance between the small bowel and the closest human external body surface, using CT colonography images. In this study, volumetric datasets of 30 patients were processed by gastrointestinal endoscopists with the dedicated custom-made software and results showed an average distance of 79.29 ± 23.85 mm

    Theoretical determination of the microstructure of Cs covering of Mo in negative ion sources for nuclear fusion applications

    No full text
    Cs is the most well known catalyst used in negative ion sources for fast neutral beam generation employed in nuclear fusion, where the element is evaporated and deposited on Mo surfaces forming non permanent films. In this paper the interaction of Cs with Mo under conditions of interest for negative ion sources is studied using different methods. Cs-Mo potential has been characterized starting from high level electronic calculations for two atoms. Mo-Mo and Mo-Cs potentials are based on new fits of the literature data. Density functional theory calculations on a reduced cell are used to determine the adsorption energy of Cs on Mo for different sites. Good reproduction of experimental results, when available, is achieved (e.g. Mo crystal data, Cs2 dissociation energy) and new results for the evaporation energy of Cs from Mo surfaces, CsMo dissociation energy, adatom geometry etc. are reported and tabulated. A functional expression of the Cs-Mo[0 0 1] interaction potential is proposed based on these ab-initio results. The use of this potential is illustrated by classical MD calculations for the morphology for Cs partial layers on Mo[0 0 1]. Calculations show that the interaction between Cs and the surface leads to peculiar morphology of Cs partial layers, to be considered in future studies of Cs role in negative ion sources as well as in the ongoing quest to alternative catalyzers.Cs è il catalizzatore più noto utilizzato nelle sorgenti di ioni negativi per la generazione di fasci di neutroni rapidi impiegati nella fusione nucleare, dove l'elemento viene evaporato e depositato su superfici Mo formando pellicole non permanenti. In questo articolo l'interazione di Cs con Mo in condizioni di interesse per fonti di ioni negativi viene studiata usando metodi diversi. Il potenziale Cs-Mo è stato caratterizzato a partire da calcoli elettronici di alto livello per due atomi. I potenziali Mo-Mo e Mo-C si basano su nuovi adattamenti dei dati della letteratura. I calcoli della teoria funzionale della densità su una cellula ridotta vengono utilizzati per determinare l'energia di adsorbimento di Cs su Mo per siti diversi. Si ottiene una buona riproduzione dei risultati sperimentali, se disponibili, (ad es. Dati sul cristallo di Mo, energia di dissociazione Cs2) e vengono riportati e tabulati nuovi risultati per l'energia di evaporazione di Cs dalle superfici Mo, energia di dissociazione CsMo, geometria adatom ecc. Un'espressione funzionale del potenziale di interazione Cs-Mo [0 0 1] è proposta sulla base di questi risultati ab-initio. L'uso di questo potenziale è illustrato dai calcoli MD classici per la morfologia degli strati parziali Cs su Mo [0 0 1]. I calcoli mostrano che l'interazione tra Cs e la superficie porta a una morfologia peculiare degli strati parziali di Cs, da prendere in considerazione in studi futuri del ruolo di Cs nelle fonti di ioni negativi e nella ricerca in corso di catalizzatori alternativi
    corecore